

New Polymeric Proton Conductors for High Temperature Applications

John Kerr, Xiao-Guang Sun, Gao Liu, Jiangbing Xie and Craig Reeder

Lawrence Berkeley National Laboratory, MS 62R0203, 1 Cyclotron Road, Berkeley CA, 94720 ibkerr@lbl.gov

Outline

- Background
 - Solid Polymer vs. Gel Polymer Ion Transport
 - Lithium ion transport vs. Proton transport.
 - Common features for Lithium Polymer batteries and PEMFC's.
- Polymer design & Synthesis.
- Preliminary Results
- Future schedule and testing development

Liquids vs. Gels vs. Dry Polymers Transport mechanisms differ

(blue: polymer chain; red: cross-linker; black: solvent)

Gel Polymer - Li Ion and Fuel Cell

Network Backbone may be polymer or inorganic. Free liquid moves with ions. Operates at ambient temp. Dry Polymer – Li Metal/polymer & Fuel Cells –High Temp PEM (150°C)

One or both ions are solvated by polymer. Ions move due to segmental motion of polymer. Need 85°C for EV performance

Anions may be tethered to polymer backbone by means of side chains. Molecular structure determines morphology and properties.

Fuel Cell Membranes Microscopic to Macroscopic

Anions tethered to polymer. Cations (H⁺, Na⁺) are mobile and solvated by water.

Molecular structure determines morphology and formation of ionic, water-rich clusters.

Fuel Cell Composite Electrodes.

- •Transport of gases and ions through crowded polymer-solid interfaces where the electrolyte mobility is restricted.
- Polyelectrolytes close to glassy phase in presence of electrode surfaces.
- •Poor ion transport and dis-bondment.
- •Ion activity?

Composite Electrodes in Li Ion Cells

Lithium ions in crowded neighborhoods

Ions plus solvent (EC/DMC, DME) – Unstable! Leads to gas generation and polymer formation

● = Conducting carbon particle

= cathode particle

Mechanisms of Ion Mobility in "Dry" Polymers - Amorphous Phase

New Polymer Architectures for Imidazole Solvating groups, Anion Mobility and Flexibility

- •Attach anions and solvating groups by grafting —control nature and concentration.
- •Use nature (pdo/bdo) and length of side chain to control chain mobility.
- •Backbone (PE, polystyrene, polysiloxane) and cross-link density to control mechanical & morphological properties.
- •Degradation results in Release of small fragments
- facilitates failure analysis.

Imidazole Proton Conductivity

Grotthus Proton Transfer?

Oxygen Separation Membrane exhibits stability to (per)oxygen

- •Vinyl Imidazole used rather than vinyl pyridine.
- •PolyvinylImidazole has high T_g. Membrane is very selective for O₂ over N₂.

Hiroyuki Nishide,* Yukihiro Tsukahara, and Eishun Tsuchida, J. Phys. Chem. B, 102 (44), 8766 -8770, 1998.

Hydrosilylation Chemistry Allows Grafting of Functions (Anions or Imidazoles) and Crosslinking for Mechanical Properties.

Prepolymers and Salts

Conductivity of Li⁺ Polyelectrolytes

Ionic Conductivity of Comb-branch SIC as a Function of Temperature

 T_g : 80 = -54°C; 45 = -53°C; 25 = -35°C

•Theoretical models predict optimum ion concentration to be half the optimum for binary salts.

(Ratner JES 148, A858 (2001))

- •Low salt concn. gives lower cost pathway.
- •Lower T_g at higher ion concn. wanted for high conductivity.
- •Side chain lengths and flexibility not optimized.

Synthesis of Prepolymers & Salts

Salt IV

Conductivities of Lithium Polyelectrolytes

DSC results of PETMO4 based single ion conductors

Prepolymer	Salt	O/Li	T _g /°C
PETMO ₄ -20		0	-85.66
PETMO ₄ -20	LiBAMB	48	-78.53
PETMO ₄ -40		0	-86.77
PETMO ₄ -40	E ₂ SO ₃ Li	54	-79.07
PETMO ₄ -40	E ₄ SO ₃ Li	56	-78.72
PETMO ₄ -40	TMO ₂ SO ₃ Li	54	-79.59
PETMO ₄ -40	Methide	52	-78.06
PETMO ₄ -40	C ₂ F ₄ OC ₂ F ₄ SO ₃ Li	54	-79.01

Uniformity of the Membrane is Critical! Rheology(DMTA) and AFM probe Membrane Properties and Uniformity – PEPE₃+ 10% AGE

Rapid growth of dendrites observed in Li/Li cells

– due to thick membrane (400µm), high x-link density that degrades transport properties and non-uniformity from non-random polymer

Comb Structures allow Increase of Mechanical strength without Loss of Ion transport Properties?

PEPE₃ (no salt) with different amount of crosslinker

Increase of X-link agent leaves fewer free allyl groups available to alter polymer morphology

PEPE3/LiTFSI 20:1 with different amounts of hydrophobic SiO₂ R805 filler

Combine X-link Chemistry with fillers for Increased Mechanical Properties

Different Surface Interactions influence Polymer Mobility (Temperature Sweep in Compression (10Hz))
Fumed SiO₂ -A200 –OH hydrophilic groups
R805 – Octyl hydrophobic groups

PEPE₃copolymer with 20% AGE-LiTFSI (20:1). X-linked to 10% density. Note increase in T_g due to presence of salt (cf. X-link with no salt).

Single-ion Conductor Gels. Add solvent to increase Ion transport to Useful Levels.

lonic conductivity for PAE_{8.66} based single ion conductors before and after plasticized with PC/EMC (1/1, v/v)

Ionic conductivity for PEPE3 based single ion conductors before and after plasticized with PC/EMS (1/1, v/v)

Imidazoles and Long Tethers good for Hydrogels - Heller

Imidazole provides stability and faster kinetics.

Long tether provides faster diffusion and leads to order of magnitude

Increas in current.

Hydrogels used for bionsensors, medical applications, etc.

New Opportunities for Old Technologies?

TD/LBNL Opportunities

Next Steps

- Prepare polyelectrolyte acid forms (usually from Na⁺ form)
- Measure "dry" conductivity, T_g-values and mechanical properties.
- Dope with imidazole, pyridine and water.
 - Measure conductivity, T_g and rheology.
- Examine polymer stability.
- Attach Imidazole to polyelectrolyte and measure properties.

Next Phase

- Optimize polyelectrolyte structure for transport
 - Concentration of imidazole, anions
 - Tether length and flexibility
 - Backbone and cross-linking
- Examine material properties with carbon filler for potential MEA construction.
- Develop more stability data.
- Initiate development of structure-function relationships

Acknowledgements

- DOE-LANL
- NASA PERS program (Glenn Research Center).
- DOE Office of FreedomCAR and Vehicle Technologies